ELECTRON TUBES

Volume II

(1942-1948)
ELECTRON TUBES
Volume II

(1942-1948)

Edited by
ALFRED N. GOLDSMITH
ARTHUR F. VAN DYCK
ROBERT S. BURNAP
EDWARD T. DICKEY
GEORGE M. K. BAKER

MARCH, 1949

Published by
RCA REVIEW
RADIO CORPORATION OF AMERICA
RCA LABORATORIES DIVISION
Princeton, New Jersey
ELECTRON TUBES OF TODAY
ELECTRON TUBES
Volume II
(1942-1948)

PREFACE

ELECTRON TUBES, Volume II, is the tenth volume in the RCA Technical Book Series and the second on the general subject of vacuum tubes, thermionics and related subjects. This volume contains material written by RCA authors and originally published during the years 1942-1948; the companion book, ELECTRON TUBES, Volume I, covers the period 1935-1941.

The papers in this volume are presented in four sections: general; transmitting; receiving; and special. The appendices include an electron tube bibliography for the years 1942-1948 and, as an additional source of reference, a list of Application Notes. The bibliography lists all papers concerning tubes even though they relate to specific applications and are covered in other volumes of the Technical Book Series on television, facsimile, UHF, and frequency modulation. This has been done to insure that all applicable material on tubes would be available in this volume—at least in reference form.

* * *

RCA Review gratefully acknowledges the courtesy of the Institute of Radio Engineers (Proc. I.R.E.), the American Institute of Physics (Jour. Appl. Phys., Jour. Opt. Soc. Amer., and Phys. Rev.), the Franklin Institute (Jour. Frank. Inst.), the Society of Motion Picture Engineers (Jour. Soc. Mot. Pic. Eng.), and Radio Magazines, Inc. (Audio Eng.) in granting to RCA Review permission to republish material by RCA authors which has appeared in their publications. The appreciation of RCA Review is also extended to all authors whose papers appear herein.

* * *

As outstanding as were electron tube developments from their invention until the start of the recent war, the progress in tube design and application technique during and since the war has been even more remarkable, particularly in power and miniature tubes. Still
newer work has already produced components which lend promise of replacing electron tubes for certain uses, but for the great majority of applications, electron tubes will continue to serve as the framework around which radio-electronic progress will be fashioned.

ELECTRON TUBES, Volume II, like its predecessor is being published, therefore, in the sincere hope that it will serve as a useful reference text and source of basic information to advance radio and electronics in all of its many facets.

The Manager, RCA Review

RCA Laboratories,
Princeton, New Jersey
March 19, 1949
ELECTRON TUBES
Volume II
(1942-1948)
CONTENTS

Page

Frontispiece
Preface: The Manager, RCA Review

V

GENERAL

Analysis of Rectifier Operation
O. H. Schade

1

Space-Current Flow in Vacuum-Tube Structures
B. J. Thompson

40

The Electron Mechanics of Induction Acceleration
J. A. Rajchman and W. H. Cherry

56

The Motion of Electrons Subject to Forces Transverse to a Uniform Magnetic Field
P. K. Weimer and A. Rose

105

Summaries:

Quantum Effects in the Interaction of Electrons with High Frequency Fields and the Transition to Classical Theory
L. P. Smith

119

Carbide Structures in Carburized Thoriated-Tungsten Filaments
C. W. Horsting

319

Determination of Current and Dissipation Values for High-Vacuum Rectifier Tubes
A. P. Kauzmann

120

TRANSMITTING

Grounded-Grid Radio-Frequency Voltage Amplifiers
M. C. Jones

121

Excess Noise in Cavity Magnetrons
R. L. Sproull

139

The Maximum Efficiency of Reflex-Klystron Oscillators
E. G. Linder and R. L. Sproull

151

A Developmental Pulse Triode for 200 Kw. Output at 600 Mc.
L. S. Nergaard, D. G. Burns and R. P. Stone

171

A New 100-Watt Triode for 1000 Megacycles
W. P. Bennett, E. A. Eschbach, C. E. Haller and W. R. Keye

180

Duplex Tetrode UHF Power Tubes
P. T. Smith and H. R. Hegbar

194

Summaries:

The Design and Development of Three New Ultra-High-Frequency Transmitting Tubes
C. E. Haller

207

Development of Pulse Triodes and Circuit to Give One Megawatt at 600 Megacycles
R. R. Law, D. G. Burns, R. P. Stone and W. B. Whalley

207

Power Measurements of Class B Audio Amplifier Tubes
D. P. Heacock

208

Coaxial Tantalum Cylinder Cathode for Continuous-Wave Magnetrons
W. R. L. Jepsen

208

Stabilized Magnetron for Beacon Service
J. S. Donal, Jr., C. L. Cuccia, B. B. Brown, C. P. Vogel and W. J. Dodds

209

A Frequency-Modulated Magnetron for Super-High Frequencies
G. R. Kilgore, C. I. Shulman and J. Kurshan

210

A 1-Kilowatt Frequency-Modulated Magnetron for 900 Megacycles
J. S. Donal, Jr., R. R. Bush, C. L. Cuccia and H. R. Hegbar

210
CONTENTS (Continued)

RECEIVING

The Operation of Frequency Converters and Mixers for Superheterodyne Reception E. W. HEROLD 212
Beam-Deflection Control for Amplifier Tubes ... G. R. KILGORE 254
Some Notes on Noise Theory and Its Application to Input Circuit Design W. A. HARRIS 280

Summaries:

Superheterodyne Frequency Conversion Using Phase-Reversal Modulation E. W. HEROLD 293
Radio-Frequency Performance of Some Receiving Tubes in Television Circuits R. M. COHEN 294
The Transistor, An Experimental Automatic-Frequency-Control Tube J. KURSHAN 294

SPECIAL

A Phototube for Dye Image Sound Track .. A. M. GLOVER AND A. R. MOORE 296
Behavior of a New Blue-Sensitive Phototube in Theater Sound Equipment J. D. PHIFFE 304
An Infrared Image Tube and Its Military Applications ... G. A. MORTON AND L. E. FLORY 308
Multiplier Photo-Tube Characteristics: Application to Low Light Levels R. W. ENGSTROM 337
Small-Signal Analysis of Traveling-Wave Tube .. C. I. SHULMAN AND M. S. HEAGY 358
Barrier Grid Storage Tube and Its Operation ... A. S. JENSEN, J. P. SMITH, M. H. MESNER AND L. E. FLORY 384
The Brightness Intensifier .. G. A. MORTON, J. E. RUEDY AND G. L. KRIEGER 408
Analysis of a Simple Model of Two-Beam Growing-Wave Tube L. S. NERGAARD 422

Summaries:

Luminescence and Tenebrescence as Applied in Radar .. H. W. LEVERENZ 439
A Newly Developed Light Modulator for Sound Recording .. G. L. DIMMICK 440
The Behavior of “Magnetic” Electron Multipliers as a Function of Frequency L. MALTER 440
Performance Characteristics of Long-Persistence Cathode-Ray Tube Screens; Their Measurement and Control ... R. E. JOHNSON AND A. E. HARDY 441
The Storage Orthicon and Its Application to Telecam .. S. V. FORGUE 442
Electron Tube Phonograph Pickup .. H. F. OLSON AND J. PRESTON 442
Performance of 931-A Type Multiplier in a Scintillation Counter G. A. MORTON AND J. A. MITCHELL 443

APPENDIX I—ELECTRON TUBE BIBLIOGRAPHY (1942-1948) .. 444
APPENDIX II—LIST OF APPLICATION NOTES (1947-1948) ... 454