McGraw-Hill
ELECTRICAL AND ELECTRONIC ENGINEERING SERIES

FREDERICK EMMONS TERMAN, Consulting Editor

VACUUM TUBES
Ahrendt and Savant · Servomechanism Practice
Angelo · Electronic Circuits
Aseltine · Transform Method in Linear System Analysis
Bailey and Gault · Alternating-current Machinery
Beranek · Acoustics
Brenner and Javid · Analysis of Electric Circuits
Bruns and Saunders · Analysis of Feedback Control Systems
Cage · Theory and Application of Industrial Electronics
Cauer · Synthesis of Linear Communication Networks
Chirlian and Zemanian · Electronics
Clement and Johnson · Electrical Engineering Science
Cote and Oakes · Linear Vacuum-Tube and Transistor Circuits
Cuccia · Harmonics, Sidebands, and Transients in Communication Engineering
Cunningham · Introduction to Nonlinear Analysis
Eastman · Fundamentals of Vacuum Tubes
Evans · Control-system Dynamics
Feinstein · Foundations of Information Theory
Fitzgerald and Higginbotham · Basic Electrical Engineering
Fitzgerald and Kingsley · Electric Machinery
Frank · Electrical Measurement Analysis
Geppert · Basic Electron Tubes
Glasford · Fundamentals of Television Engineering
Greiner · Semiconductor Devices and Applications
Hammond · Electrical Engineering
Hancock · An Introduction to the Principles of Communication Theory
Happell and Hesselberth · Engineering Electronics
Harman · Fundamentals of Electronic Motion
Harrington · Introduction to Electromagnetic Engineering
Harrington · Time-harmonic Electromagnetic Fields
Hayt · Engineering Electromagnetics
Hill · Electronics in Engineering
Johnson · Transmission Lines and Networks
Koenig and Blackwell · Electromechanical System Theory
Kraus · Antennas
Kraus · Electromagnetics
Kuh and Pederson · Principles of Circuit Synthesis
Ledley · Digital Computer and Control Engineering
LePage · Analysis of Alternating-current Circuits
LePage · Complex Variables and the Laplace Transform for Engineers
LePage and Seely · General Network Analysis
VACUUM TUBES

KARL R. SPANGENBERG

Professor of Electrical Engineering
Stanford University

NEW YORK TORONTO LONDON
McGRAW-HILL BOOK COMPANY, INC.
1948
TO MY COLLEAGUES AND STUDENTS
PREFACE

This book is the outgrowth of a course in vacuum-tube design given for many years at Stanford University to senior and graduate students in electrical engineering and physics. It is concerned with the determination of vacuum-tube characteristics in terms of the electron action within the tube. The book attempts to bridge the gap between the physical laws that lie behind the electron behavior and the external characteristics of the tubes themselves.

It is hoped that the point of view taken will be acceptable to both physicists and engineers. The development of the physical laws involved is indicated, after which emphasis is placed upon their description and utilization. Although this book cannot pretend to give much design information, the attempt has been to include enough of the basic relations, physical data, and significant references to make it a useful reference source to vacuum experimenters and tube designers.

Vacuum tubes may seem a rather special subject to which to restrict the material in a book. Actually this is not so. In preparing the book so much material was collected that the contents had to be restricted to first-order effects. It is felt that although engineers and physicists working with vacuum tubes are primarily concerned with the utilization of already developed tubes, the successful application of these tubes is greatly enhanced by a knowledge of their limitations and an understanding of the origin of their characteristics. This is particularly true since there are many occasions when it is desired to use tubes under conditions different from those specified by the manufacturer. Under these conditions it is imperative to know how far one may depart from recommended operating conditions without exceeding some design limitation of the tube. This, in turn, requires a knowledge of how the tube operates.

Circuits and tube applications are so completely covered in the textbook and periodical literature that no effort has been made to include information on these subjects. Only in the case of ultra-high-frequency tubes where the tube cannot be completely separated from the circuit have circuit considerations been included.

The author is indebted to many people for assistance rendered in the preparation of this book. He is particularly indebted to Dr. F. E. Ter-
man, dean of the Stanford School of Engineering, who was a constant source of inspiration and encouragement, and who made many valuable suggestions and gave much direct assistance in checking the work. The author is also indebted to Prof. Paul Kirkpatrick, head of the Physics Department at Stanford, for suggestions on the material of Chaps. 3 to 6 and 9; to Prof. L. Marton for suggestions on the material of Chaps. 13 to 15 and 20; and to C. V. Litton for much information and suggestions relative to Chap. 21. He is indebted to Evelyn G. Sarson, who typed a large part of the manuscript in its final form. O. O. Pardee and Will Harman assisted in the correction of the entire work. Lastly, the author is more than a little indebted to his wife, who personally typed much of the manuscript and was a source of constant assistance.

KARL R. SPANGENBERG

Palo Alto, Calif.
January, 1948
CONTENTS

Preface. .. v

Chapter 1—Introduction 1
 1.1 Devices Using Electron Tubes 1
 1.2 Functions of Vacuum Tubes 2
 Rectification—Amplification—Oscillation—Frequency Conversion—Modulation—Detection—Light-image Production—Photocatalytic Action

Chapter 2—Basic Tube Types 5
 2.1 Vacuum Diode ... 5
 2.2 Vacuum Triode ... 6
 2.3 Screen-grid Tube 7
 2.4 Pentode .. 8
 2.5 Beam-power Tube 9
 2.6 Cathode-ray Tubes 12
 2.7 Klystron .. 13
 2.8 Magnetron .. 15
 2.9 Phototubes ... 17

Chapter 3—Electrons and Ions 19
 3.1 The Electron ... 19
 3.2 The Proton ... 19
 3.3 Other Fundamental Particles 20
 3.4 Atoms and Molecules 20
 3.5 Ions .. 22

Chapter 4—Electronic Emission 23
 4.1 Theory of Thermionic Emission 24
 Work Function—The Emission Equation—Types of Emitter
 4.2 Emission of Pure Metals 35
 Tungsten—Tantalum
 4.3 Atomic-film Emitters 39
 4.4 Oxide Emitters .. 42
 Theory of Oxide Emission—Activation of Oxide Emitters—Specific Emission Characteristics—Transient Emission
 4.5 Schottky Effect 46
 4.6 Contact Difference of Potential 48
CONTENTS

4.7 Secondary Emission

Chapter 5—Determination of Potential Fields

- 5.1 Units and Dimensions .. 58
- 5.2 Fundamental Quantities and Definitions 59
 - Forces between Charges
- 5.3 Solution of Potential Fields by Summation of Intensities 61
- 5.4 Summation of Potentials .. 62
- 5.5 Gauss’s Law .. 64
- 5.6 Poisson’s and Laplace’s Equations 67
 - Interpretations of Laplace’s Equation—Solutions of Laplace’s Equation in Two Dimensions—Difference Form of Laplace’s Equation
- 5.7 Elastic-membrane Models of Potential 75
- 5.8 Current-flow Models of Potential 76
- 5.9 Sketching of Flux and Potential Fields 80
 - Properties Useful in Sketching Fields
- 5.10 Method of Conformal Transformations 82
 - Complex Functions Satisfy Laplace’s Equation—Definition of Analytic Functions—The Logarithmic Transformation—The Function \(W = Z^{1/n} \)

Chapter 6—Laws of Electron Motion

- 6.1 Electron in a Uniform Electric Field 97
- 6.2 Initial Velocity not Parallel to Field 99
- 6.3 Electrostatic Deflection of Cathode-ray Beams 101
- 6.4 Relativity Correction for Velocity 103
- 6.5 Two-dimensional Electric Fields 107
- 6.6 Electron in a Uniform Magnetic Field 111
- 6.7 Behavior of Electrons in Nonuniform Magnetic Fields 114
- 6.8 Combined Electric and Magnetic Fields 116
- 6.9 Approximate Numerical and Graphical Methods for Determining Electron Paths ... 121

Chapter 7—The Electrostatic Field of a Triode

- 7.1 Method of Solution .. 125
- 7.2 Electrostatic Field of a Plane-electrode Low-mu Triode 125
 - Contour Representation of Potential Field—Profile Representation of Potential Field
- 7.3 Electrostatic Field of a Low-mu Cylindrical-electrode Triode 135
 - Potential Contours of a Cylindrical Triode—Potential Profiles of a Cylindrical Triode
- 7.4 Analysis of the High-mu Triode 142
 - Potential Contours and Profiles—Amplification Factor of a High-mu Plane-electrode Triode—Amplification Factor of a High-mu Cylindrical Triode
CONTENTS

7.5 The Equivalent Electrostatic Circuit of a Triode 152
7.6 Equivalent-diode Spacing of a Triode ... 153
Diode Equivalent to a Plane-electrode Triode—Diode Equivalent to a Cylindrical-electrode Triode
7.7 Application of Amplification-factor Formulas to Actual Triodes 156
7.8 More Accurate Amplification-factor Formulas 158
Formula for Small Grid-plate Spacings—Formulas for Small Screening Fraction—Formula for Small Cathode-grid Spacings
7.9 Amplification Factor of Unconventional Tubes 165

CHAPTER 8—SPACE-CHARGE EFFECTS .. 168
8.1 Effects of Current Flow .. 168
8.2 Plane-electrode Space-charge Flow .. 170
8.3 Cylindrical-electrode Space-charge Flow ... 173
8.4 Space-charge Flow for Other Geometries ... 181
Spherical Electrodes—The General Case
8.5 Current Law for Plane Triodes .. 183
Current Law in Terms of Electrode Dimensions
8.6 Mutual Conductance of a Plane Triode ... 188
8.7 Mutual Conductance of a Cylindrical Triode 188
8.8 Effect of Filamentary Emitters .. 189
8.9 Effect of Initial Electron Velocity ... 191
8.10 Effect of Space Charge upon Transit Time in Diodes 195
8.11 Summary .. 198

CHAPTER 9—TRIODE CHARACTERISTICS ... 201
9.1 Control Action of the Grid ... 201
9.2 Current-voltage Characteristics of the Triode 202
Plate-current—Grid-voltage Characteristics—Plate-current—Plate-voltage Characteristics—Contours of Constant Plate Current—The Plate-current Surface
9.3 Definition of Triode Constants .. 205
Amplification Factor—Mutual Conductance—Plate Resistance—Relation between Tube Constants—Variation of Tube "Constants"
9.4 Effective Tube Constants of Combinations of Tubes 212
9.5 Electron Paths .. 213
9.6 Grid Current ... 218
9.7 Primary-grid-current Law .. 224

CHAPTER 10—TETRODES ... 238
10.1 Types of Tetrode .. 238
10.2 Current-voltage Characteristics of the Screen-grid Tube 238
Plate-current—Plate-voltage Characteristics of Screen-grid Tube—Screen-current—Plate-voltage Characteristics of the Screen-grid Tube—General Characteristics of Screen-grid Tubes
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3 Beam-power Tubes</td>
<td>245</td>
</tr>
<tr>
<td>10.4 The Electrostatic Field of a Beam-power Tube</td>
<td>245</td>
</tr>
<tr>
<td>10.5 Space-charge Effects in the Screen-grid-Anode Region of Beam-power Tubes</td>
<td>248</td>
</tr>
<tr>
<td>Type A Distribution—Type B Distribution—Type C Distribution—Type D Distributions</td>
<td></td>
</tr>
<tr>
<td>10.6 Dynamic Characteristics of Beam-power Tubes</td>
<td>259</td>
</tr>
<tr>
<td>Injected Current Varied, Potentials Constant—Plate Potential Varied, Screen Potential and Injected Current Constant</td>
<td></td>
</tr>
<tr>
<td>Chapter 11—Pentodes</td>
<td>266</td>
</tr>
<tr>
<td>11.1 Electrode Arrangement in a Pentode</td>
<td>266</td>
</tr>
<tr>
<td>11.2 Current-voltage Characteristics of the Pentode</td>
<td>267</td>
</tr>
<tr>
<td>Plate-current-Control-grid-voltage Characteristics—Plate-current—Plate-voltage Characteristics of a Pentode—Space-current—Plate-voltage Characteristics of the Pentode—Screen-grid-current—Plate-voltage Characteristics of a Pentode—Suppressor-grid Effects</td>
<td></td>
</tr>
<tr>
<td>11.3 Current Division in Pentodes</td>
<td>272</td>
</tr>
<tr>
<td>11.4 Amplification Factor of a Pentode</td>
<td>278</td>
</tr>
<tr>
<td>Electrostatic Field of a Pentode—Electrostatic Amplification Factor of a Pentode—True Amplification Factor of a Pentode</td>
<td></td>
</tr>
<tr>
<td>11.5 Transconductance of a Pentode</td>
<td>288</td>
</tr>
<tr>
<td>11.6 Plate Resistance of a Pentode</td>
<td>288</td>
</tr>
<tr>
<td>11.7 Design Considerations</td>
<td>289</td>
</tr>
<tr>
<td>Chapter 12—Noise in Vacuum Tubes</td>
<td>298</td>
</tr>
<tr>
<td>12.1 Noise as a Limiting Factor in the Ultimate Sensitivity of Electronic Devices</td>
<td>298</td>
</tr>
<tr>
<td>12.2 Noise in Resistors</td>
<td>299</td>
</tr>
<tr>
<td>12.3 Sources of Noise in Tubes</td>
<td>305</td>
</tr>
<tr>
<td>12.4 Shot Noise in Diodes with Temperature-limited Emission</td>
<td>306</td>
</tr>
<tr>
<td>12.5 Reduced Shot Effect in Diodes with Space-charge-limited Emission</td>
<td>308</td>
</tr>
<tr>
<td>12.6 Reduced Shot Effect in Triodes with Space-charge-limited Current</td>
<td>310</td>
</tr>
<tr>
<td>12.7 Noise Due to Gas in Tubes</td>
<td>312</td>
</tr>
<tr>
<td>12.8 Reduced Shot Effect in Multielectrode Tubes with Space-charge-limited Current</td>
<td>313</td>
</tr>
<tr>
<td>12.9 Noise in Mixer Tubes</td>
<td>314</td>
</tr>
<tr>
<td>12.10 Noise Induced at Ultra-high Frequencies by Random Emission</td>
<td>316</td>
</tr>
<tr>
<td>12.11 Noise in Velocity-modulation Tubes</td>
<td>317</td>
</tr>
<tr>
<td>12.12 Noise in Phototubes</td>
<td>318</td>
</tr>
<tr>
<td>12.13 Noise in Secondary-emission Multipliers</td>
<td>319</td>
</tr>
<tr>
<td>12.14 Definition of Noise Figure</td>
<td>321</td>
</tr>
<tr>
<td>Noise Figure for Two Networks in Cascade</td>
<td></td>
</tr>
<tr>
<td>12.15 Measurement of Noise and Noise Figure</td>
<td>325</td>
</tr>
<tr>
<td>Typical Tube-noise Values</td>
<td></td>
</tr>
<tr>
<td>Chapter 13—Electrostatic Electron Optics</td>
<td>328</td>
</tr>
<tr>
<td>13.1 Introduction</td>
<td>328</td>
</tr>
<tr>
<td>Snell's Law—The Principle of Least Action—Simple Lenses—Lens Formulas</td>
<td></td>
</tr>
</tbody>
</table>
15.6 High-efficiency Cathodes ... 449
Parallel Flow of a Rectangular Beam—Parallel-flow Cylindrical
Beam—Convergent Radial Flow of a Conical Beam
15.7 Ultra-high-frequency Deflection Effects 465
15.8 Photography of Cathode-ray Traces 470
Beam Power—Screen Types—Writing Speed—Time, Stop, and Mag-
nification—Film Sensitivity—Developers and Development

Chapter 16—Ultra-high-frequency Effects in Conventional Tubes .. 475
16.1 Introduction .. 475
16.2 Causes of Decreased Output at Ultra-high Frequencies 475
16.3 Onset of Tube-reactance Limitations 477
16.4 The Nature of Currents Induced by Electron Motion at Ultra-
high Frequencies .. 482
The General Case—The Diode without Space Charge—The Diode with
Space Charge—Currents Induced in the Electrodes of a Triode
16.5 Onset of Transit-time Effects in Triodes 490
16.6 Transit-time Effects in the Space-charge-limited Diode 495
16.7 Small-signal Transit-time Effects in the Space-charge-limited Triode .. 501
16.8 Similitude and Scaling in Ultra-high-frequency Triodes 504
16.9 High-frequency Limit of Triode Oscillation 507
16.10 Large-signal Effects .. 516
Transit-time Effects in Diodes—Transit-time Effects in Triodes—
Transit-time Effects in Tetrodes—The Resatron
16.11 Disk-seal Tubes .. 524

Chapter 17—Velocity-modulated Tubes or Klystrons 527
17.1 The Bunching Principle ... 527
17.2 Cavity Resonators .. 529
17.3 Mechanism of Energy Interchange between Electrons and Cavity
Resonators ... 537
17.4 First-order Bunching Theory ... 541
17.5 The Klystron Amplifier .. 556
Structure of the Klystron Amplifier—Output Power of the Klystron
Amplifier—Efficiency of the Klystron Amplifier—Mutual Conductance
of the Klystron Amplifier—Power Required to Bunch the Beam
17.6 The Cascade Amplifier ... 564
17.7 Frequency-multiplier Klystrons 566
17.8 Second-order Bunching Effects 567
17.9 The Reflex-klystron Oscillator .. 571
Behavior of Electrons in the Reflector Space—Distance-time Diagram
of a Reflex-klystron Oscillator—Bunching Theory of the Reflex-klystron
Oscillator—Self-admittance of the Beam—Mechanism by Which
Oscillations Start—Variation of Beam Conductance with Amplitude
of Oscillation—The Electronic-admittance Spiral—Reflex-klystron Os-
cillation with a Simple Resonant Circuit—Power Relations in the
Reflex-klystron Oscillator—Voltage Stability of Reflex-klystron
Oscillators
17.10 Broad-band Operation of Reflex-klystron Oscillators 591
Equivalent Circuit of Concentric-line Resonator—Possible Modes of
CONTENTS

Push-pull Negative-resistance Circuit—Feedback Circuits—Special Negative-resistance Tubes

20.8 Negative-transconductance Tubes .. 723
20.9 Electron-ray Indicator Tubes ... 723
20.10 Directed-ray Electron Tubes .. 724
20.11 Deflection Tubes ... 727
20.12 Television Camera Tubes .. 728
The Image-dissector Tube—The Iconoscope—The Image Iconoscope—The Orthicon—The Image Orthicon—The Monoscope
20.13 The Electron Microscope .. 738

CHAPTER 21—HIGH-VACUUM PRACTICE .. 747
21.1 Introduction .. 747
21.2 Fundamental Gas Laws ... 749
21.3 Measurement of Vacuum ... 757
Manometers—The McLeod Gauge—The Spark-discharge Tube—The Pirani Gauge—The Thermocouple Gauge—Triode Ionization Gauge
21.4 Pumping Speed ... 775
Speed of an Aperture—Definition of Pump Speed—Speed of Tubing—Effect of Tubing Upon Pumping Speed
21.5 Production of Low Vacuum ... 780
21.6 Production of High Vacuum .. 781
The Mercury-diffusion Pump—Oil Pumps—Fractionating Pumps
21.7 Glass and Its Properties .. 791
Composition of Glass—Physical Properties of Glass—Working of Glass
21.8 Sealing of Glass to Other Materials ... 796
Sealing of Small Leads Into Glass—Copper-to-glass Seals—Kovar and Fernico—Glass-to-porcelain Seals—Glass-to-mica Seals
21.9 Metals Useful in Tube Construction .. 801
Nickel—Copper—Aluminum—Molybdenum—Tantalum—Tungsten—Relative Properties of the Metals—Spot Welding
21.10 Insulators ... 807
21.11 Degassing of Glass and Metals .. 808
21.12 Getters ... 809

APPENDICES

I. Properties of the Elements .. 811
II. Differential Operators and Vector Notation 813
III. A Note on Mks Units .. 817
IV. Characteristics of Fluorescent Screens ... 821
CONTENTS

V. Surface Resistance and Depth of Penetration of Current Resulting from Skin Effects 822
VI. Principal Properties of the Bessel Functions ... 823
VII. Values of \(\alpha^2 \) as a Function of \(r_c/r \) for use in Eq. (15.63) 825
VIII. Nomographic Chart Relating Object and Image Distance to the Focal Length of a Thin Lens ... 826
IX. Nomographic Chart Relating Tube Constants .. 827
X. Designation of Frequency Bands ... 828

PROBLEMS ... 829

NAME INDEX .. 849

SUBJECT INDEX ... 853