FUNDAMENTALS OF
ENGINEERING ELECTRONICS

BY
WILLIAM G. DOW
Assistant Professor of Electrical Engineering
University of Michigan

NEW YORK
JOHN WILEY & SONS, INC.
LONDON: CHAPMAN & HALL, LIMITED
1937
PREFACE

It has for some time been a conviction of the author and his associates that, no matter how facile an engineer may be in the manipulation of electronic circuits, his effectiveness is distinctly limited unless he has a satisfactory understanding of the operating principles of the electronic circuit elements that he uses. The ability to grasp readily the reasons for the behavior of new devices as they appear is especially important. The relative ease with which electronic devices can be made to order to accomplish specific purposes is an added reason for placing initial emphasis in electronics instruction on internal operating principles. These considerations have been the basis for the method of instruction in electronics at the University of Michigan ever since courses in the subject were introduced about eight years ago.

In the preparation of this book, which is an outgrowth of the author’s teaching experience, an attempt has been made to maintain a proper balance between two underlying objectives:

(1) To give the reader a realistic and quantitatively usable conception of the principles that govern the internal behavior of electronic devices (this is the primary objective); and

(2) To familiarize the reader with methods of circuit analysis customarily employed in connection with the most common engineering applications of electronic devices.

Accordingly, the chief emphasis in this book is placed on internal operating principles. A large part of the text is devoted to a study of the effects of the use of various geometries and materials in electronic devices, and a relatively small part to circuit studies.

The point of view is that of an engineer: Principles of importance in engineering work are selected for study; illustrations of these principles are drawn from engineering practice; and physical concepts are so treated as to permit ready determinations of magnitudes. Familiarity with relative magnitudes is of course essential to a satisfactory engineering understanding of any scientific subject-matter.

Reasoning from purely physical concepts has been used rather than mathematical formulation, wherever the latter could be avoided without loss of definiteness. However, a large part of the subject-matter requires mathematical analysis for the establishment of proper quantitative concepts, and wherever that is true, mathematical methods have been used freely.
PREFACE

It is perhaps unfortunate that one of the most difficult subjects treated falls naturally very early in the text, in Chapter II. However, in his work with undergraduates the author has tried teaching triode electrostatic field analysis later in the course, and has also tried a qualitative treatment, involving a statement of the general results with little attention to the mathematical formulation. Such methods have not proved satisfactory. The conclusions reached by means of field analyses are rather striking, and class enthusiasm is dampened if denied satisfaction of the curiosity that naturally arises as to how these conclusions are arrived at.

This book has been especially designed for use in full-year courses for undergraduate or graduate students; however, the content is so arranged that it is readily adaptable, with certain omissions, for one-semester courses. It is hoped that the book will also find a place as a reference work for engineers in industry.

The author wishes to acknowledge gratefully the encouragement and active assistance rendered during the entire period of development of the electronics work by Professors A. D. Moore, S. S. Attwood, and L. N. Holland, all of the Electrical Engineering Department of the University of Michigan; also to express appreciation of the care and thoughtfulness with which portions of the manuscript were reviewed and ably criticized by Professor Attwood, and by Professor Samuel Goudsmit of the Physics Department of the University of Michigan. The author is indebted to all other members of the staff of the Electrical Engineering Department, and to many of those in the Physics Department, especially to Professor O. S. Duffendack, for ever-ready advice and counsel; also to Messrs. Ralph Bodine and John Lopus for the thoughtful and careful draftsmanship exercised during the preparation of the original drawings for the figures.

W. G. Dow

March 20, 1937
CONTENTS

PART I

ELECTRONS

INTRODUCTION

HIGH-VACUUM THERMIONIC TRIODES

SECTION PAGE
1. A Triode in a Simple Amplifier Circuit 1
2. Electrostatic Control of Plate Current by Grid and Plate Voltages ... 2
3. Organization of Text Material 6

CHAPTER I

POTENTIAL DISTRIBUTION DIAGRAMS

4. Units and Conversions 7
5. Electric Intensity and Potential; Force on an Electron 8
6. Poisson’s and the Laplace Equations; Potential Distribution Diagrams in One and Two Dimensions 9
7. Surface and Space-Charge Density in Potential Diagrams 13
8. Potential Diagrams for One-Dimensional Fields in Regions Containing Space Charge 15
9. Spherical and Cylindrical Coordinates 17

CHAPTER II

THE ELECTROSTATIC FIELD OF A TRIODE

10. Conformal Transformations 20
11. Conformal Transformation of a Parallel-Plane Triode 24
12. Placement of Charges to Satisfy Triode Boundary Conditions 25
13. Equations for Space-Charge-Free Potential Distribution 31
14. Charge Magnitudes 33
15. Space-Charge-Free Off-Cathode Field Intensity 34
16. Dependence of E_0 on an Equivalent Voltage 35
17. Electrostatic Coefficients; Cathode Charge Always Proportional to an Equivalent Voltage 36
18. Amplification Factor μ in Terms of Dimensions 39
19. Spacing of Equivalent Space-Charge-Free Diode 43
20. Parallel-Plane Grid and Plate Structure with Filamentary Cathode .. 44
21. Conformal Transformation of a Cylindrical Triode 45
22. Amplification Factor and Spacing of Equivalent Diode, for a Cylindrical Triode 49
23. Limitations to the Validity of Triode Geometrical Relations ... 51
24. Mapping the Fields 52
CHAPTER III

ELECTRON BALLISTICS

25. Acceleration Due to an Electric Field .. 56
26. Velocity and Potential; the Electron Volt 57
27. Directed Energies; Velocity Measurable in Square Root Volts 58
29. Force on an Electron Moving in a Magnetic Field 61
30. Path Circular or Helical in a Uniform Magnetic Field; Superposition of Magnetic Motions ... 62
31. Opposing Electric and Magnetic Fields; Moving Magnetic Fields 64
32. Cycloidal and Trochoidal Motion in the Presence of Uniform Electric and Magnetic Fields ... 66
33. Motion between Concentric Cylinders with Magnetic Field Parallel to Axis 70
34. Mass: a Property Due to Electric and Magnetic Fields 75
35. "Rest Mass" of an Electron; Increase of Mass at Large Velocities] 75
36. "Transverse Mass" and "Longitudinal Mass" 77
37. Relation of Velocity and Mass to Accelerating Potential 78
38. Motions in Irregularly Curved Fields ... 79

CHAPTER IV

CATHODE RAYS

39. Cathode Ray: a Name for a Beam of Electrons 84
40. The Cathode-Ray Oscillograph .. 84
41. Voltage Sensitivity .. 85
42. Magnetic Sensitivity .. 87
43. Measuring-Circuit Relations .. 88
44. Photographic and Visual Sensitivity; Penetration of High-Velocity Electrons .. 89
45. Production and Focusing of the Beam 90
46. Time-Axis Motion ... 93
47. Cathode Rays as Current Carriers; Television 95

CHAPTER V

SPACE-CHARGE FLOW

49. Zero Gradient at the Cathode: a Condition for Maximum Space Charge Consistent with Steady Current Flow 98
51. Space-Charge-Limited Volt-Ampere Relation, Parallel Plane Electrodes 100
52. Space-Charge-Limited Current in a Parallel-Plane Triode 102
53. Magnitude of the Spacing-Factor \(s \), Parallel-Plane Triode 103
54. Space-Charge-Limited Volt-Ampere Relationship, Concentric Cylinders ... 106
55. Space-Charge-Limited Current in a Cylindrical Triode 109
56. Effect of Potential Variation along the Cathode on Space-Charge-Limited Current .. 112
57. Capacitance between Electrodes Carrying a Space-Charge-Limited Current 116
58. Energy Dissipation at the Plate ... 117
CONTENTS

CHAPTER VI

TIRODES, TETRODES, PENTODES

SECTION

PAGE

59. Grids Permit Electrostatic Control of Space-Charge-Limited Triode Current 121
60. Current-Voltage Relations in Triodes 121
61. Grid Current .. 124
62. Tetrodes or Screen-Grid Tubes 126
63. The Various μ's for a Tetrode 129
64. Analysis of Screen Grid Characteristics; Secondary Emission 130
65. Shielding of Screen by Oscillating Space Charge 134
66. Pentodes, Beam Power Tubes, and Critical Distance Tubes 135
67. Oscillating Space Charge .. 141
68. Coupling between Internal and External Oscillations 143

CHAPTER VII

THERMIonic CATHODES

69. Electron-Emitting Efficiency of a Cathode Surface 148
70. Dushman's Equation Relating Thermionic Current Density and Temperature .. 149
71. The Voltage Equivalent of Temperature 150
72. Energies of Escaping Electrons 152
73. Graphical Evaluation of Emission Constants 153
74. Cathode Power Dissipation .. 155
75. Heat Transfer by Radiation; Emissivity Coefficients 156
76. Temperature Measurements; Lead Losses 159
77. Overall Relationship between Thermionic Current Density and Power .. 159
78. Inward-Radiating Cathodes .. 160
79. Low-Work-Function Surfaces .. 161

CHAPTER VIII

WORK FUNCTIONS OF HOMOGENEOUS SURFACES

80. Ionizing Potentials of Atoms .. 163
81. Free Electrons in Metals .. 164
82. Work Function .. 164
83. Energy-Level Diagrams; Gross and Net Work Function 165
84. Normal (Low-Temperature) Distribution of Kinetic Energy 166
85. Thermionic Emission .. 167
86. Why Kinetic-Energy Levels have Finite Spacings; the "Quantum" of Action .. 168
87. Why Each Kinetic-Energy Level Can Accommodate Only a Limited Number of Electrons; the "Exclusion Principle" 170
88. Electron Spin .. 172
89. Actual Energy of the Normal Maximum Level 173
90. Normal Average Energy ... 174
91. Normal Energy Distribution ... 175
92. The Outward Flight of an Electron; the Image Force 176
93. Relation between Potential-Energy Curve and Force Curve 178
94. Potential-Energy Diagrams vs. Potential Distribution Diagrams 180
95. Gross Work Function Inversely Proportional to Atomic Spacing 182
CHAPTER IX

ENERGY-LEVEL DIAGRAMS OF METALS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>96. Purposes for Which Energy-Level Diagrams are Useful</td>
<td>188</td>
</tr>
<tr>
<td>97. Valve Action Outside a Thermionic Cathode Surface When Current Is</td>
<td></td>
</tr>
<tr>
<td>Space-Charge-Limited</td>
<td>188</td>
</tr>
<tr>
<td>98. Magnitude of the Negative Potential Dip Outside the Cathode</td>
<td>190</td>
</tr>
<tr>
<td>99. Conditions in a Triode at and Near Cut-Off</td>
<td>191</td>
</tr>
<tr>
<td>100. Reduction of Work Function by Strong External Fields</td>
<td>192</td>
</tr>
<tr>
<td>101. Contact Difference of Potential</td>
<td>194</td>
</tr>
<tr>
<td>102. Effect of Contact Difference of Potential on Triode Plate Current</td>
<td>196</td>
</tr>
<tr>
<td>103. Thoriated Tungsten Cathodes</td>
<td>197</td>
</tr>
<tr>
<td>104. Oxide-Coated Cathodes</td>
<td>199</td>
</tr>
<tr>
<td>105. Potential-Energy Diagrams for Polarized Atomic Layers</td>
<td>201</td>
</tr>
<tr>
<td>107. “Saturation”; Failure of Composite Surfaces to Saturate; Grid Control of Temperature-Limited Currents</td>
<td>204</td>
</tr>
</tbody>
</table>

CHAPTER X

DISTRIBUTIONS OF RANDOM VELOCITIES OF GAS PARTICLES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>108. Dependence of Average Energy on Temperature, for Ordinary Gases and Electronic Gases Within Metals</td>
<td>208</td>
</tr>
<tr>
<td>109. The “Most Probable” Energy Distribution</td>
<td>210</td>
</tr>
<tr>
<td>110. Symbols and Terminology for Distribution Curves and Equations</td>
<td>212</td>
</tr>
<tr>
<td>111. Maxwellian Distribution Curves for Total Velocities in an Ordinary Gas</td>
<td>215</td>
</tr>
<tr>
<td>112. Equations for Total-Velocity Maxwellian Distribution Curves; Average Total Velocity and Energy</td>
<td>217</td>
</tr>
<tr>
<td>113. Equations for Total-Velocity Maxwellian Integrated Distribution Curves</td>
<td>219</td>
</tr>
<tr>
<td>114. Curves and Equations for z-Directed Maxwellian Velocity Distributions</td>
<td>220</td>
</tr>
<tr>
<td>115. Relations between Total and z-Directed Maxwellian Distribution Equations</td>
<td>222</td>
</tr>
<tr>
<td>116. Total-Velocity Distribution Curves and Equations for a Degenerate Gas</td>
<td>224</td>
</tr>
<tr>
<td>117. z-Directed Velocity Distribution Curves and Equations for a Degenerate Gas</td>
<td>227</td>
</tr>
<tr>
<td>118. High-Velocity z-Directed Distribution for the Electrons within a Metal</td>
<td>230</td>
</tr>
</tbody>
</table>

CHAPTER XI

ELECTRICAL EFFECTS OF RANDOM MOTIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>119. Rate at Which Gas Particles Arrive at a Boundary Wall</td>
<td>233</td>
</tr>
<tr>
<td>120. Derivation of Dushman’s Equation for Thermionic Current Density</td>
<td>234</td>
</tr>
<tr>
<td>121. Distribution of Initial Velocities Among Electrons Emitted from a Thermionic Surface</td>
<td>236</td>
</tr>
<tr>
<td>122. Equations and Averages for the “Time-Exposure-over-a-Surface” Velocity Distribution of Escaping Electrons</td>
<td>238</td>
</tr>
<tr>
<td>123. Average Energies of Arriving Maxwellian Particles and of Escaping Electrons</td>
<td>241</td>
</tr>
<tr>
<td>124. Effect of Initial Velocities on Space-Charge-Limited Current Density, Plane Cathode</td>
<td>242</td>
</tr>
</tbody>
</table>
CONTENTS

SECTION PAGE
125. Effect of Initial Electron Velocities on Space-Charge-Limited Current Flow from a Cylindrical Cathode .. 246
126. Shot Effect and Voltages within Conductors Due to Random Motions; Noise Level ... 248
127. Random Current Density in an Ion or Electron Gas ... 250
128. Boundary Currents in a Conducting Gas; Sheath Penetration .. 251
129. "Time-Exposure-over-a-Surface" Distribution of Penetrating Electrons 252
130. Richardson's Equation for Thermionic Emission .. 253
131. Equilibrium between Different Potentials in an Enclosure; the Boltzmann Relation 253
132. Free Paths of Gas Particles .. 256

CHAPTER XII

Amplifier Circuit Principles

133. Plate Resistance and Grid-Plate Transconductance of High-Vacuum Thermionic Tubes ... 263
134. The Amplification Factor .. 264
135. Evaluation of Tube Constants .. 266
136. Simple Amplifier Circuits; the Load Line ... 266
137. Point of Zero Excitation; Current-Voltage Locus; Dynamic or Tube-and-Circuit Characteristic ... 268
138. Relations between Alternating-Current and Direct-Current Components of Voltage and Current .. 270
139. Elliptical Current-Voltage Locus with Reactive Load .. 272
140. The Alternating-Current Equivalent Circuit; Phase Reversal in an Amplifier 275
141. Slope of the Dynamic Characteristic ... 280
142. Uses and Limitations of the Equivalent Circuit; Harmonic and Frequency Distortion .. 281
143. Choice of Tube and Load Resistances .. 283
144. Maximum Undistorted Power Output .. 284
145. Plate Circuit Efficiency and Power Dissipation ... 286
146. Use of Chokes and Condensers to Provide "Parallel Feed" of Direct-Current Power to the Plate .. 288
147. Frequency Limitations of Parallel-Feed Amplifiers .. 290

CHAPTER XIII

Harmonics; Class B and Push-Pull Amplifiers

148. Straightness of the Dynamic Characteristic a Criterion of Freedom from Harmonic Distortion .. 296
149. Parabolic Dynamic Characteristic Introduces a Second Harmonic 298
150. Third Harmonic Introduced by Dynamic Characteristic of Cubic Form 300
151. Class B Amplifiers ... 303
152. Class B Push-Pull Amplifiers ... 305
153. Dynamic Characteristics and Equivalent Circuits for Push-Pull Amplifiers 307
CONTENTS

CHAPTER XIV

<table>
<thead>
<tr>
<th>SECTION</th>
<th>Title</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>154.</td>
<td>Cascading of Amplifiers; Voltage Gain and Decibel Gain</td>
<td>314</td>
</tr>
<tr>
<td>155.</td>
<td>Direct Coupling between Stages</td>
<td>315</td>
</tr>
<tr>
<td>156.</td>
<td>Transformer and Condenser Coupling</td>
<td>316</td>
</tr>
<tr>
<td>157.</td>
<td>Voltage vs. Power Amplification</td>
<td>318</td>
</tr>
<tr>
<td>158.</td>
<td>Resistance-Condenser Coupling</td>
<td>318</td>
</tr>
<tr>
<td>159.</td>
<td>Transformer Coupling, Infinite Output Resistance</td>
<td>320</td>
</tr>
<tr>
<td>160.</td>
<td>Transformer Size and Turn Ratio</td>
<td>323</td>
</tr>
<tr>
<td>161.</td>
<td>Transformer Coupling to a Finite Load Resistance</td>
<td>324</td>
</tr>
<tr>
<td>162.</td>
<td>Regeneration</td>
<td>326</td>
</tr>
<tr>
<td>163.</td>
<td>Tuned Plate Oscillator</td>
<td>326</td>
</tr>
<tr>
<td>164.</td>
<td>Other Regenerative Oscillator Circuits</td>
<td>330</td>
</tr>
<tr>
<td>165.</td>
<td>Tuned Amplifiers</td>
<td>330</td>
</tr>
<tr>
<td>166.</td>
<td>Dynatron Oscillators</td>
<td>331</td>
</tr>
</tbody>
</table>

PART II

ELECTRONS, ATOMS, AND RADIATION

CHAPTER XV

ATOMIC ENERGIES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>167.</td>
<td>The Function of Positive Ions in Gaseous Conducting Devices</td>
<td>338</td>
</tr>
<tr>
<td>168.</td>
<td>Energy Required for Ionization; Energy-Level Diagrams</td>
<td>339</td>
</tr>
<tr>
<td>169.</td>
<td>Excited States of Atoms</td>
<td>340</td>
</tr>
<tr>
<td>170.</td>
<td>Transitions between Levels</td>
<td>341</td>
</tr>
<tr>
<td>171.</td>
<td>Electron-Volt Measure of the Color of Light</td>
<td>343</td>
</tr>
<tr>
<td>172.</td>
<td>Scales on Energy-Level Diagrams</td>
<td>346</td>
</tr>
<tr>
<td>173.</td>
<td>Resonance Radiation; Photoelectric Action</td>
<td>346</td>
</tr>
<tr>
<td>174.</td>
<td>Spectral Symbolism and Electron Configuration</td>
<td>347</td>
</tr>
<tr>
<td>175.</td>
<td>Atomic Number; Isotopes</td>
<td>347</td>
</tr>
<tr>
<td>176.</td>
<td>Energy Levels As Related to Electronic Motions</td>
<td>348</td>
</tr>
<tr>
<td>177.</td>
<td>Energies of the Levels; One Electron in a Nuclear Field</td>
<td>349</td>
</tr>
<tr>
<td>178.</td>
<td>Limitations of the Orbital Physical Picture</td>
<td>351</td>
</tr>
<tr>
<td>179.</td>
<td>Three-Dimensional Quantization</td>
<td>351</td>
</tr>
<tr>
<td>180.</td>
<td>The Exclusion Principle; Grouping of the Levels</td>
<td>353</td>
</tr>
<tr>
<td>181.</td>
<td>Shells</td>
<td>354</td>
</tr>
<tr>
<td>182.</td>
<td>Relations between Electron Arrangement and Chemical and Physical Properties of the Elements</td>
<td>355</td>
</tr>
<tr>
<td>183.</td>
<td>Magnetic Quantization: $\alpha \hbar$</td>
<td>355</td>
</tr>
<tr>
<td>184.</td>
<td>Action and Angular Momentum</td>
<td>358</td>
</tr>
</tbody>
</table>

CHAPTER XVI

ENERGY LEVELS FOR PARTICULAR ELEMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>185.</td>
<td>Identification of Levels</td>
<td>360</td>
</tr>
<tr>
<td>186.</td>
<td>Energy Levels for the Arc Spectrum of Sodium</td>
<td>360</td>
</tr>
<tr>
<td>187.</td>
<td>Term Values</td>
<td>360</td>
</tr>
<tr>
<td>188.</td>
<td>Configuration</td>
<td>361</td>
</tr>
</tbody>
</table>
CONTENTS

SECTION PAGE
189. Symbols .. 361
190. The Meanings of Symbols 361
191. Symbols for Sodium 363
192. J-Values .. 363
193. Selection Principles .. 363
194. Series of Levels in Sodium 364
195. Mercury ... 364
196. Mercury Metastable States 365
197. Negative Term Values 367
198. Light from Mercury Vapor and from Sodium Vapor; Fluorescence 367
199. Neon ... 369
200. Copper .. 371

CHAPTER XVII
PHOTOELECTRIC EMISSION AND ELECTROMAGNETIC WAVES

201. Photoelectric Emission 376
203. A Plane-Polarized Electromagnetic Wave; the Radiation Vector 380
204. The Mechanism of Propagation 382
205. Details of the Field around a Radiating Energy Source 384
206. Polarized Light .. 386
207. Composition of Light from Various Source Particles 387
208. Interference .. 387
209. Reflection; Standing Waves and Nodal Layers 388
210. Light Penetration and Absorption 391
211. Mechanism of the Photoelectric Ejection of Electrons 391
212. Color Sensitivity; Selective Photoelectric Emission 393
213. Energies of Escaping Electrons 396

CHAPTER XVIII
PHOTOSENSITIVE DEVICES

215. Effects of Contact Difference of Potential in a Phototube 399
216. Volt-Ampere Response of a Vacuum-Type Tube in which the Emitter Surrounds the Receiver .. 400
217. Use of Gas to Amplify Photoelectric Currents 401
218. Mechanism of Gas Amplification; Elastic and Inelastic Collisions 402
219. Dependence of Amplification on Electrode Spacing and on Ionization Rate 406
220. Dependence of Ionization Rate on Gas Concentration and on Field Strength 406
221. Gas Amplification Limited by Space Charge 410
222. Volt-Ampere Properties of Gas-Filled Phototubes; Phototube Circuit Analysis .. 413
223. Rectifier-Type or "Sandwich" Photocells; Semiconductors 416
224. Photoconducting Cells 423
225. Time-Lag in Photosensitive Devices 423
CONTENTS

CHAPTER XIX

226. Appearance ... 426
227. Definite Values of Arc Current, not of Arc Voltage, Required by Circuits 426
228. Plasmas and Plasma Boundaries ... 427
229. Properties of a Plasma ... 429
230. Recombination Occurs in Boundary Regions, Not in Plasmas 430
231. Scattering of Electron Energies; Electron Velocity Distributions 432
232. Plasma Cross Section; Equilibrium, Pinch Effect, and a Least-Energy Requirement .. 434
233. Ion and Electron Mobilities; Drift Currents in a Plasma 435
234. Drift Velocities of Plasma Electrons .. 438
235. Proportionality of Drift Velocities of Electrons and Ions to the Electric Field Strength or its Square Root ... 441
236. Drift Velocities of Plasma Ions and Electrons ... 442
237. Mobilities of Townsend Current Ions and Electrons 444
238. Rate of Ion Production and Ion Loss in a Plasma .. 444
239. Energy Transfer in Low-Pressure Plasmas ... 446
240. Energy Input to the Plasma ... 448
241. Static Arc and Glow Volt-Amper e Curves; Empirical Relations 449
242. Arc and Glow Stability; Oscillating Arc Circuits .. 449
243. Voltage and Current Variations in a High-Frequency Pulsating Arc 451
244. Voltage and Current Relations in Alternating-Current Arcs; Reignition 453

CHAPTER XX

Plasma Boundary Regions

245. The Cathode Spot and Cathode Fall Space of a Glow Discharge 458
246. The Effect of Changes of Gas Concentration in a Glow Discharge; Similar- tude ... 460
247. Sputtering of Cathode Material .. 463
248. The Cathode Spot and Cathode Fall Space of an Arc 463
249. The Anode Fall Space .. 466
250. Sheaths ("Inactive Boundaries") ... 466
251. Current-Carrying Sheaths; Probes ... 467
252. Current Densities in Current-Carrying Sheaths ... 472
253. Measurement of Electron Temperature ... 473
254. Sheath Thickness; Shut-Off Grids ... 474
255. Measurement of Ion Concentrations .. 477
256. Insulating Sheaths ... 477
257. Flaming Sheaths around Unrestricted Plasmas .. 478

CHAPTER XXI

Mercury-Vapor Rectifiers

258. Mercury-Vapor Rectifiers Essentially High-Speed Switching Devices 480
259. Classification as to Types and Uses .. 481
260. Commercial Classification .. 483
261. Rectifying and Filtering ... 486
CONTENTS

SECTION PAGE
262. Alternating-Current Switching; Control of Average Current 487
263. Inverse Voltage Rating of Rectifiers; Arc-Back 488
264. Forward Voltage Rating 489
265. Current Ratings 490
266. "Clean-Up" of the Conducting Gas 491
267. Concentration of Mercury Atoms in Mercury-Vapor Rectifiers 492
268. Grid Control of Arc Initiation 494
269. Mechanism of Arc Initiation; Grid Control Curves 496
270. Current-Limiting Grid Circuit Resistors 499
271. Shield-Grid Thyatrons 499
272. Igniter-Rod Control of Arc Initiation 500
273. Statistical Variation of Firing-Time in Ignitrons 501

CHAPTER XXII

SINGLE-PHASE CIRCUITS CONTAINING RECTIFYING ELEMENTS

274. Filters for Full-Wave Single-Phase Rectifiers 506
275. Per Cent Ripple 508
276. Single-Phase Filter Circuit Behavior: (I) Filter with Choke Only 509
277. Single-Phase Filter Circuit Behavior: (II) Filter with Condenser Only; "Cut-Out" and "Cut-In" Points 511
278. Single-Phase Filter Circuit Behavior: (III) Choke and Condenser both Present 514
279. Selection of Circuit Constants for a Choke Input Full-Wave Single-Phase Filter 515
280. Repeating Transients 521
281. Phase-Shift Control of Thyatrons 522
282. Inversion from Direct to Alternating Current 526
283. Parallel-Type Single-Phase Inverters 527
284. Failure of Commutation in Inverters 530
285. Series-Type Single-Phase Inverters 531

TABLES (See list on next page) 535-556

BIBLIOGRAPHY 559

INDEX 571
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Dependence of β^2 on r/r_c, in expressions for space-charge-limited currents from cylindrical cathodes</td>
<td>535</td>
</tr>
<tr>
<td>II</td>
<td>Function relating plate current to voltage drop along filament</td>
<td>536</td>
</tr>
<tr>
<td>III</td>
<td>Electron emission constants</td>
<td>537</td>
</tr>
<tr>
<td>IV</td>
<td>Ratio of hot to cold resistances of filament materials</td>
<td>538</td>
</tr>
<tr>
<td>V</td>
<td>Properties of the atoms of the elements</td>
<td>539</td>
</tr>
<tr>
<td>VI</td>
<td>Quantum-number combinations for rectangular quantization</td>
<td>543</td>
</tr>
<tr>
<td>VII</td>
<td>Gross work functions of the alkali metals</td>
<td>544</td>
</tr>
<tr>
<td>VIII</td>
<td>Integrals containing e^{-r^2}</td>
<td>545</td>
</tr>
<tr>
<td>IX</td>
<td>Potential distribution function outside a plane electron-emitting cathode</td>
<td>547</td>
</tr>
<tr>
<td>X</td>
<td>Quantum-number combinations for polar quantization, also, groups and subgroups of electrons in shells around atomic nuclei</td>
<td>548</td>
</tr>
<tr>
<td>XI</td>
<td>Term values for the arc spectrum of sodium</td>
<td>549</td>
</tr>
<tr>
<td>XII</td>
<td>Term values for the arc spectrum of mercury</td>
<td>550</td>
</tr>
<tr>
<td>XIII</td>
<td>Term values for the arc spectrum of Neon</td>
<td>551</td>
</tr>
<tr>
<td>XIV</td>
<td>Term values for the arc spectrum of copper</td>
<td>552</td>
</tr>
<tr>
<td>XV</td>
<td>Electron mean free paths</td>
<td>553</td>
</tr>
<tr>
<td>XVI</td>
<td>Mercury vapor pressure as related to temperature</td>
<td>555</td>
</tr>
<tr>
<td>XVII</td>
<td>Values of the fundamental physical constants</td>
<td>556</td>
</tr>
</tbody>
</table>