ELECTRICAL ENGINEERING

BY E. E. KIMBERLY, PROFESSOR OF ELECTRICAL ENGINEERING, THE OHIO STATE UNIVERSITY

THIRD EDITION

INTERNATIONAL TEXTBOOK COMPANY
SCRANTON, PENNSYLVANIA
Preface for Third Edition

This book is written especially for engineering college students who are not majoring in electrical engineering and also for those who are majoring in electrical communication.

The beginning portion contains enough single-phase, polyphase, and transient circuit analysis to enable the student to understand the more common types of industrial electrical machinery as described in the middle half and also to understand the more common elements of electronic industrial control described in the last portion. It is believed that the contents are sufficient to give a "non-electrical" engineer a good foundation of working knowledge of all electrical apparatus that he is likely to use. It should enable him to speak and understand the language of the electrical engineer.

Furthermore, it is believed that an electrical engineer whose major interest is communication will find about all of the working knowledge of power machinery that he is likely to need in his chosen speciality.

The choice of materials is also intended to provide an introductory course for electrical engineers where that course will be followed by more detailed courses. The pace is set to enable the instructor to start laboratory assignments almost immediately after the first lecture.

Inasmuch as it may be desirable to omit some parts of the context to accommodate a shortened course, a flow sheet has been added to show chapters that must be studied in sequence and others that may be interspersed as laboratory progress permits.

E. E. Kempfery
Contents

Preface ............................................................................ V
Introduction .................................................................. XIII

The Structure of Matter—Static Electricity—Dynamic Electricity—Conductors and Insulators—Sources of Electromotive Force.

Chapter 1—Magnetic Fields and the Generation of Electromotive Force


Chapter 2—Commercial Forms of Electromotive Force; Power and Energy


Chapter 3—The Electric Circuit


Chapter 4—Electromotive Forces in Conductors in Series

Use of Vectors—Phase Displacement—Addition of Voltages With Phase Displacement—A More Convenient Notation—The Polar Form of Vector Representation—Exponential Form of Vector Representation.

Chapter 5—Circuits With Resistance, Inductance, and Capacitance

Chapter 6—Electrical Conductors ........................................... 53
Resistance of Conductors—Wire Gages—Change in Resistance With Change
in Temperature—Economical Size of Wire.

Chapter 7—Electromagnets ..................................................... 57
Magnetic Circuit—Magnetoelectrical Force—Permeability and Saturation of
Iron—General Magnetic Circuits—Parallel Magnetic Circuits—Hysteresis—
Permanant Magnets—Induc Currents—Energy Stored in a Magnetic Field
—Application of Magnets—Pull of Magnets and Solenoids—The Studing Coil

Chapter 8—Electrical Transformers ......................................... 73
Direct-Current Transformers—Current Transformer in a Purely Inductive
Circuit—Current Transformer When Rel Circuit Is Closed—Time Constant of the RL
Circuit—Storage of Electromagnetic Energy—Transformers in an RL Circuit—
Energy Stored in a Condenser—Discharge of a Condenser in an RL Circuit—
Transformers in Alternating-Current Circuits—Circuit With Resistance Only—
Circuit Containing Inductance Only—Circuit With Inductance and Resist-
ance Only—Circuit With Capacitance Only—Circuit With Resistance and
Capacitance Only.

Chapter 9—Polyphase Circuits ............................................... 88
Classes of Circuits—The Use of the Doube Subscript—Three-Phase Circuits
—Phase Sequence—Electromotive Force in a Delta-Connected System—
The Balanced Three-Phase Wye-Connected Load—The Balanced Three-
Phase Delta-connected Load—Compensated Delta and Wye Loads—Power in
Three-Phase Circuit by Three-Wattmeter Method—Measurement of Three-
Phase Power by Two-Wattmeter Method—Interconnection of Wattmeter
Readings in Two-Wattmeter Method—Phase Sequence Induction—Three-
Phase Kva and Power Factor—The Three-Phase, Four-Wire System—
Centre of Methods of Measuring Three-Phase Power.

Chapter 10—The Direct-Current Machine ................................. 104
Types of Direct-Current Machines—Armature of Direct-Current Generator
—The Commutator—The Elementary Generator—Direct-Current—Lap
Winding—Wave Winding—Field Structure—Field Excitation of Shunt
Generator—Building up Voltage of a Self-Excited Generator—Calculation of
Electromotive Force in a Generator—Performance of a Shunt Generator—
Other Limits of Power Output—Voltage Stabilization—Operation at Voltages
Above or Below Rated Voltage—Operating at Speeds Above or Below Rated
Speed—The Compound Generator—The Series Generator—Armature Reac-
tion—Calculation of Armature Reaction—Interpoles—Change in Characteris-
tics—Parallel Operation of Compound Generators—Calculation of Series-
Field Turns for Compounding a Shunt Generator—Effect of Back EMF—
Communator Wear.

Chapter 11—The D-C Machine as a Motor: Force on a Conductor
Carrying a Current in a Magnetic Field .................................. 128
Lenz’s Law—Simultaneous Application of Faraday’s Law and Lenz’s Law—
The Shunt Motor—Interpoles Connections in Motor—Calculation of Torque
in a Motor—Characteristics of Shunt Motors—Speed Control of a Shunt
Chapter 18—The Polyphase Induction Motor ................................. 212

Chapter 19—The Polyphase Synchronous Motor .............................. 234

Chapter 20—Alternating-Current Generators ................................ 244

Chapter 21—The Single-Phase Motor ............................................ 256

Chapter 22—Electric Batteries ...................................................... 266

Chapter 23—Economics of Use of Electrical Apparatus ...................... 274