This book is revised and brought up to date (at irregular intervals) as necessitated by technical progress.

THE RADIO HANDBOOK

Fifteenth Edition

The Standard of the Field —
for advanced amateurs
practical radiomen
practical engineers
practical technicians

WILLIAM I. ORR, W6SAI
Editor, 15th Edition

$7.50 per copy at your dealer in U.S.A.
(Add 10% on direct orders to publisher)

Published and Distributed to the Radio Trade by
Editors and Engineers LIMITED
SUMMERLAND, CALIFORNIA, U.S.A.

(Distributed to the Book and News Trades and Libraries by the Baker & Taylor Co., Hillside, N. J.)
THE RADIO HANDBOOK
FIFTEENTH EDITION

Copyright, 1959, by
Editors and Engineers, Ltd.
Summerland, California, U.S.A.

Copyright under Pan-American Convention
All Translation Rights Reserved

Printed in U.S.A.

The "Radio Handbook" in Spanish or Italian is available from us at $8.25 postpaid. French and Dutch editions in preparation.

Outside North America, if more convenient, write: (Spanish) Marcombo, S.A., Av. Jose Antonio, 584, Barcelona, Spain; (Italian) Edizioni C.E.L.I., Via Gandino 1, Bologna, Italy; (French or Dutch) P. H. Brans, Ltd., 28 Prins Leopold St., Borgerhout, Antwerp, Belgium.

Other Outstanding Books from the Same Publisher
(See Announcements at Back of Book)

THE RADIO TELEPHONE LICENSE MANUAL

THE SURPLUS RADIO CONVERSION MANUALS

THE WORLD'S RADIO TUBES (Radio Tube Vade Mecum)

THE WORLD'S EQUIVALENT TUBES (Equivalent Tube Vade Mecum)

THE WORLD'S TELEVISION TUBES (Television Tube Vade Mecum)
THE RADIO HANDBOOK

15th Edition

Table of Contents

<table>
<thead>
<tr>
<th>Chapter One. INTRODUCTION TO RADIO</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1 Amateur Radio</td>
<td>11</td>
</tr>
<tr>
<td>1-2 Station and Operator Licenses</td>
<td>12</td>
</tr>
<tr>
<td>1-3 The Amateur Bands</td>
<td>12</td>
</tr>
<tr>
<td>1-4 Starting Your Study</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Two. DIRECT CURRENT CIRCUITS</td>
<td>21</td>
</tr>
<tr>
<td>2-1 The Atom</td>
<td>21</td>
</tr>
<tr>
<td>2-2 Fundamental Electrical Units and Relationships</td>
<td>22</td>
</tr>
<tr>
<td>2-3 Electrostatics — Capacitors</td>
<td>30</td>
</tr>
<tr>
<td>2-4 Magnetism and Electromagnetism</td>
<td>35</td>
</tr>
<tr>
<td>2-5 RC and RL Transients</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Three. ALTERNATING CURRENT CIRCUITS</td>
<td>41</td>
</tr>
<tr>
<td>3-1 Alternating Current</td>
<td>41</td>
</tr>
<tr>
<td>3-2 Resonant Circuits</td>
<td>53</td>
</tr>
<tr>
<td>3-3 Nonsinusoidal Waves and Transients</td>
<td>58</td>
</tr>
<tr>
<td>3-4 Transformers</td>
<td>61</td>
</tr>
<tr>
<td>3-5 Electric Filters</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Four. VACUUM TUBE PRINCIPLES</td>
<td>67</td>
</tr>
<tr>
<td>4-1 Thermionic Emission</td>
<td>67</td>
</tr>
<tr>
<td>4-2 The Diode</td>
<td>71</td>
</tr>
<tr>
<td>4-3 The Triode</td>
<td>72</td>
</tr>
<tr>
<td>4-4 Tetrode or Screen Grid Tubes</td>
<td>77</td>
</tr>
<tr>
<td>4-5 Mixer and Converter Tubes</td>
<td>79</td>
</tr>
<tr>
<td>4-6 Electron Tubes at Very High Frequencies</td>
<td>80</td>
</tr>
<tr>
<td>4-7 Special Microwave Electron Tubes</td>
<td>81</td>
</tr>
<tr>
<td>4-8 The Cathode-Ray Tube</td>
<td>84</td>
</tr>
<tr>
<td>4-9 Gas Tubes</td>
<td>87</td>
</tr>
<tr>
<td>4-10 Miscellaneous Tube Types</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Five. TRANSISTORS AND SEMI-CONDUCTORS</td>
<td>90</td>
</tr>
<tr>
<td>5-1 Atomic Structure of Germanium and Silicon</td>
<td>90</td>
</tr>
<tr>
<td>5-2 Mechanism of Conduction</td>
<td>90</td>
</tr>
<tr>
<td>5-3 The Transistor</td>
<td>92</td>
</tr>
<tr>
<td>5-4 Transistor Characteristics</td>
<td>94</td>
</tr>
<tr>
<td>5-5 Transistor Circuity</td>
<td>96</td>
</tr>
<tr>
<td>5-6 Transistor Circuits</td>
<td>103</td>
</tr>
</tbody>
</table>
Chapter Six. VACUUM TUBE AMPLIFIERS ... 106
 6-1 Vacuum Tube Parameters ... 106
 6-2 Classes and Types of Vacuum-Tube Amplifiers 107
 6-3 Biasing Methods ... 108
 6-4 Distortion in Amplifiers ... 109
 6-5 Resistance-Capacitance Coupled Audio-Frequency Amplifiers 109
 6-6 Video-Frequency Amplifiers .. 113
 6-7 Other Interstage Coupling Methods 113
 6-8 Phase Inverters ... 115
 6-9 D-C Amplifiers ... 117
 6-10 Single-ended Triode Amplifiers 118
 6-11 Single-ended Pentode Amplifiers 120
 6-12 Push-Pull Audio Amplifiers ... 121
 6-13 Class B Audio Frequency Power Amplifiers 123
 6-14 Cathode-Follower Power Amplifiers 127
 6-15 Feedback Amplifiers .. 129
 6-16 Vacuum-Tube Voltmeters .. 130

Chapter Seven. HIGH FIDELITY TECHNIQUES 134
 7-1 The Nature of Sound .. 134
 7-2 The Phonograph ... 136
 7-3 The High Fidelity Amplifier .. 138
 7-4 Amplifier Construction .. 142
 7-5 The "Baby Hi Fi" .. 143
 7-6 A High Quality 25 Watt Amplifier 146

Chapter Eight. RADIO FREQUENCY VACUUM TUBE AMPLIFIERS 149
 8-1 Grid Circuit Considerations 149
 8-2 Plate-Circuit Considerations 151
 8-3 Class C R-F Power Amplifiers 152
 8-4 Class B Radio Frequency Power Amplifiers 157
 8-5 Special R-F Power Amplifier Circuits 160
 8-6 A Grounded-Grid 304TL Amplifier 163
 8-7 Class AB1 Radio Frequency Power Amplifiers 165

Chapter Nine. THE OSCILLOSCOPE .. 170
 9-1 A Typical Cathode-Ray Oscilloscope 170
 9-2 Display of Waveforms .. 175
 9-3 Lissajous Figures ... 176
 9-4 Monitoring Transmitter Performance with the Oscilloscope 179
 9-5 Receiver I-F Alignment with an Oscilloscope 180
 9-6 Single Sideband Applications 182

Chapter Ten. SPECIAL VACUUM TUBE CIRCUITS 185
 10-1 Limiting Circuits ... 185
 10-1 Clamping Circuits ... 187
 10-3 Multivibrators ... 188
 10-4 The Blocking Oscillator ... 190
 10-5 Counting Circuits .. 190
 10-6 Resistance-Capacity Oscillators 191
 10-7 Feedback .. 192
<table>
<thead>
<tr>
<th>Chapter Eleven. ELECTRONIC COMPUTERS</th>
<th>194</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-1 Digital Computers</td>
<td>195</td>
</tr>
<tr>
<td>11-2 Binary Notation</td>
<td>195</td>
</tr>
<tr>
<td>11-3 Analog Computers</td>
<td>197</td>
</tr>
<tr>
<td>11-4 The Operational Amplifier</td>
<td>199</td>
</tr>
<tr>
<td>11-5 Solving Analog Problems</td>
<td>200</td>
</tr>
<tr>
<td>11-6 Non-linear Functions</td>
<td>202</td>
</tr>
<tr>
<td>11-7 Digital Circuity</td>
<td>204</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter Twelve. RADIO RECEIVER FUNDAMENTALS</th>
<th>207</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-1 Detection or Demodulation</td>
<td>207</td>
</tr>
<tr>
<td>12-2 Superregenerative Receivers</td>
<td>209</td>
</tr>
<tr>
<td>12-3 Superheterodyne Receivers</td>
<td>210</td>
</tr>
<tr>
<td>12-4 Mixer Noise and Images</td>
<td>212</td>
</tr>
<tr>
<td>12-5 R-F Stages</td>
<td>213</td>
</tr>
<tr>
<td>12-6 Signal-Frequency Tuned Circuits</td>
<td>216</td>
</tr>
<tr>
<td>12-7 I-F Tuned Circuits</td>
<td>218</td>
</tr>
<tr>
<td>12-8 Detector, Audio, and Control Circuits</td>
<td>225</td>
</tr>
<tr>
<td>12-9 Noise Suppression</td>
<td>227</td>
</tr>
<tr>
<td>12-10 Special Considerations in U-H-F Receiver Design</td>
<td>231</td>
</tr>
<tr>
<td>12-11 Receiver Adjustment</td>
<td>235</td>
</tr>
<tr>
<td>12-12 Receiving Accessories</td>
<td>236</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter Thirteen. GENERATION OF RADIO FREQUENCY ENERGY</th>
<th>239</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-1 Self-Controlled Oscillators</td>
<td>239</td>
</tr>
<tr>
<td>13-2 Quartz Crystal Oscillators</td>
<td>244</td>
</tr>
<tr>
<td>13-3 Crystal Oscillator Circuits</td>
<td>247</td>
</tr>
<tr>
<td>13-4 Radio Frequency Amplifiers</td>
<td>251</td>
</tr>
<tr>
<td>13-5 Neutralization of R.F. Amplifiers</td>
<td>252</td>
</tr>
<tr>
<td>13-6 Neutralizing Procedure</td>
<td>255</td>
</tr>
<tr>
<td>13-7 Grounded Grid Amplifiers</td>
<td>258</td>
</tr>
<tr>
<td>13-8 Frequency Multipliers</td>
<td>258</td>
</tr>
<tr>
<td>13-9 Tank Circuit Capacitances</td>
<td>261</td>
</tr>
<tr>
<td>13-10 L and Pi Matching Networks</td>
<td>265</td>
</tr>
<tr>
<td>13-11 Grid Bias</td>
<td>267</td>
</tr>
<tr>
<td>13-12 Protective Circuits for Tetrode Transmitting Tubes</td>
<td>269</td>
</tr>
<tr>
<td>13-13 Interstage Coupling</td>
<td>270</td>
</tr>
<tr>
<td>13-14 Radio-Frequency Chokes</td>
<td>272</td>
</tr>
<tr>
<td>13-15 Parallel and Push-Pull Tube Circuits</td>
<td>273</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter Fourteen. R-F FEEDBACK</th>
<th>274</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-1 R-F Feedback Circuits</td>
<td>274</td>
</tr>
<tr>
<td>14-2 Feedback and Neutralization of a Two-Stage R-F Amplifier</td>
<td>277</td>
</tr>
<tr>
<td>14-3 Neutralization Procedure in Feedback-Type Amplifiers</td>
<td>279</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter Fifteen. AMPLITUDE MODULATION</th>
<th>282</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-1 Sidebands</td>
<td>282</td>
</tr>
<tr>
<td>15-2 Mechanics of Modulation</td>
<td>283</td>
</tr>
<tr>
<td>15-3 Systems of Amplitude Modulation</td>
<td>285</td>
</tr>
<tr>
<td>15-4 Input Modulation Systems</td>
<td>292</td>
</tr>
<tr>
<td>15-5 Cathode Modulation</td>
<td>297</td>
</tr>
<tr>
<td>15-6 The Doherty and the Terman-Woodyard Modulated Amplifiers</td>
<td>298</td>
</tr>
<tr>
<td>15-7 Speech Clipping</td>
<td>300</td>
</tr>
<tr>
<td>15-8 The Bias-Shift Heising Modulator</td>
<td>307</td>
</tr>
</tbody>
</table>
21-6 Propagation of Radio Waves ... 413
21-7 Ground-Wave Communication .. 414
21-8 Ionospheric Propagation ... 416
21-9 Transmission Lines .. 420
21-10 Non-Resonant Transmission Lines 421
21-11 Tuned or Resonant Lines ... 424
21-12 Line Discontinuities ... 425

Chapter Twenty-Two. ANTENNAS AND ANTENNA MATCHING 426
22-1 End-Fed Half-Wave Horizontal Antennas 426
22-2 Center-Fed Half-Wave Horizontal Antennas 427
22-3 The Half-Wave Vertical Antenna 430
22-4 The Ground Plane Antenna .. 431
22-5 The Marconi Antenna ... 432
22-6 Space-Conserving Antennas .. 434
22-7 Multi-Band Antennas .. 436
22-8 Matching Non-Resonant Lines to the Antenna 442
22-9 Antenna Construction .. 448
22-10 Coupling to the Antenna System 451
22-11 Antenna Couplers ... 454
22-12 A Single-Wire Antenna Tuner 456

Chapter Twenty-Three. HIGH FREQUENCY ANTENNA ARRAYS 459
23-1 Directive Antennas .. 459
23-2 Long Wire Radiators .. 461
23-3 The V Antenna ... 462
23-4 The Rhombic Antenna .. 464
23-5 Stacked-Dipole Arrays ... 465
23-6 Broadside Arrays .. 468
23-7 End-Fire Directivity .. 473
23-8 Combination End-Fire and Broadside Arrays 475

Chapter Twenty-Four. V-H-F AND U-H-F ANTENNAS 477
24-1 Antenna Requirements .. 477
24-2 Simple Horizontally-Polarized Antennas 479
24-3 Simple Vertical-Polarized Antennas 480
24-4 The Discone Antenna .. 481
24-5 Helical Beam Antennas ... 483
24-6 The Corner-Reflector and Horn-Type Antennas 485
24-7 VHF Horizontal Rhombic Antenna 486
24-8 Multi-Element V-H-F Beam Antennas 488

Chapter Twenty-Five. ROTARY BEAMS 494
25-1 Unidirectional Parasitic End-Fire Arrays (Yagi Type) 494
25-2 The Two Element Beam ... 494
25-3 The Three-Element Array .. 496
25-4 Feed Systems for Parasitic (Yagi) Arrays 498
25-5 Unidirectional Driven Arrays 504
25-6 Bi-Directional Rotatable Arrays 505
25-7 Construction of Rotatable Arrays 506
25-8 Tuning the Array ... 509
25-9 Antenna Rotation Systems ... 513
25-10 Indication of Direction ... 514
25-11 "Three-Bands" Beams .. 514
Chapter Thirty-Two. POWER SUPPLIES .. 684
32-1 Power Supply Requirements .. 684
32-2 Rectification Circuits ... 689
32-3 Standard Power Supply Circuits 690
32-4 Selenium and Silicon Rectifiers 695
32-5 100 Watt Mobile Power Supply 697
32-6 Transistorized Power Supplies 703
32-7 Two Transistorized Mobile Supplies 706
32-8 Power Supply Components .. 707
32-9 Special Power Supplies .. 709
32-10 Power Supply Design .. 712
32-11 300 Volt, 50 Ma. Power Supply 715
32-12 500 Volt, 200 Milliamperes Power Supply 716
32-13 1500 Volt, 425 Milliamperes Power Supply 717
32-14 A Dual Voltage Transmitter Supply 718
32-15 A Kilowatt Power Supply .. 718

Chapter Thirty-Three. WORKSHOP PRACTICE 720
33-1 Tools .. 720
33-2 The Material .. 723-A
33-3 TVI-Proof Enclosures .. 724-A
33-4 Enclosure Openings ... 725-A
33-5 Summation of the Problem 725-A
33-6 Construction Practice ... 726-A
33-7 Shop Layout .. 729-A

Chapter Thirty-Four. ELECTRONIC TEST EQUIPMENT 721-B
34-1 Voltage, Current and Power 721-B
34-2 Measurement of Circuit Constants 727-B
34-3 Measurements with a Bridge 728-B
34-4 Frequency Measurements ... 729-B
34-5 Antenna and Transmission Line Measurements 730-B
34-6 A Simple Coaxial Reflectometer 732
34-7 Measurements on Balanced Transmission Lines 734
34-8 A "Balanced" SWR Bridge .. 736
34-9 The Antennascope .. 738
34-10 A Silicon Crystal Noise Generator 740

Chapter Thirty-Five. RADIO MATHEMATICS AND CALCULATIONS 742
FOREWORD TO THE FIFTEENTH EDITION

Over two decades ago the historic first edition of the RADIO HANDBOOK was published as a unique, independent, communications manual written especially for the advanced radio amateur and electronic engineer. Since that early issue, great pains have been taken to keep each succeeding edition of the RADIO HANDBOOK abreast of the rapidly expanding field of electronics.

So quickly has the electron invaded our everyday affairs that it is now no longer possible to segregate one particular branch of electronics and define it as radio communications; rather, the transfer of intelligence by electrical means encompasses more than the vacuum tube, the antenna, and the tuning capacitor.

Included in this new, advanced Fifteenth Edition of the RADIO HANDBOOK are fresh chapters covering electronic computers, r.f. feedback amplifiers, and high fidelity techniques, plus greatly expanded chapters dealing with semi-conductors and special vacuum tube circuits. The other chapters of this Handbook have been thoroughly revised and brought up to date, touching briefly on those aspects in the industrial and military electronic fields that are of immediate interest to the electronic engineer and the radio amateur. The chapters have been completely re-edited. All new equipments described therein are of modern design, free of TVI problems and various unwanted parasitic oscillations. An attempt has been made not to duplicate items that have been featured in contemporary magazines. The transceiver makes its major bow in this edition of the RADIO HANDBOOK, and it is felt that this important, inexpensive, compact "radio station" design will become more popular during the coming years.

The writing and preparation of this Handbook would have been impossible without the lavish help that was tendered the editor by fellow amateurs and sympathetic electronic organizations. Their friendly assistance and helpful suggestions were freely given in the true amateur spirit to help make the 15th edition of the RADIO HANDBOOK an outstanding success.

The editor and publisher wish to thank those individuals and companies whose selfless support made the compilation and publication of this book an interesting and inspired task.

—William I. Orr, W6SAI, 3AZAF, Editor

E. P. Alverez, W6DMN, Jennings Radio Co.
Orrin H. Brown, W6HB, Eitel-McCullough, Inc.
Wm. E. Bunting, W92S0, E. F. Johnson, Inc.
Thomas Consaul, W3EOZ, Barker & Williamson, Inc.
Cal Hadlock, W1CTW, National Co., Inc.
Jo E. Jennings, W6EI, Jennings Radio Co.
Al Kahn, W8DUS, Electrovoice, Inc.
Ken Klippe, W0SQO, Collins Radio Co.
Roger Mace, W5MWZ, Heath Co.
E. R. Mullings, W8VPN, Heath Co.
Edward A. Neal, W2JZK, General Electric Co.

Wesley Schum, W9DYY, Central Electronics, Inc.
Aaron Self, W8FYR, Continental Electronics & Sound Co.
Harold Vance, K2FF, Radio Corporation of America
J. A. Haines, Semi-conductor Division, Radio Corporation of America
Special thanks are due Collins Radio Co. for permission to reprint portions of their Sideband Report CTR-113 by Warren Breene, W0TJK
Bud Radio Co., Inc.
California Chassis Co., Inc.
Cardwell Condenser Co., Inc.
Centralab, Inc.
Curtiss-Dahlller Electric Co., Inc.
Cowan Publishing Corp.
International Business Machines Co., Inc.
Marion Electrical Instrument Co., Inc.
Miller Coil Co., Inc.
Raypar, Inc.
Baytheon Mfg. Co., Inc.
Sarkes-Tarzian, Inc.
Sprague Electric Co.
Triad Transformer Co.
Bob Adams, W6AVA
Frank Clement, W6KPC
Al Cline, W6LGU
Temple Ehmsen, W7VS
Ted Gillett, W6HX
Bill Glaser, W6OKG
Bill Guimond, W6YMD
Ted Henry, W6UOU
Herbert Johnson, W7GRA
James Lee, W6YAT
Earl Lucas, W2JT
Bill Mauzy, W6WJO
Ken Pierce, W6SLQ
Don Storer, W6TCS
Bob Thompson, K98S
Karl Trovinger, W6MK
Bill Vandermeid, W7DET
Dick West, W6IUG
Edward Willis, W6TS
Joseph Jasgr
(photography)
B. A. Ontiveros, W6FFF
(drafting)
Del Rairigh, W6ZAT